N
$P:‘ DAL L"?@

& N
> 7\
& 2
< . =<
o) o
. &
&O@y i OQ

THE UniveRs™

OpenAnalysis: Status as Used 1n
OpenADFortTk and ADIC

Michelle Strout
1/20/05

OpenAnalysis Overview

Clients

—Uses —»
----Generates --»
- Implements 1>

Toolkit - Results

_Interface |

Z% A
Analysis f-------—-- » Results
- Analysis |
i__IR_In}g_l:ﬁa_c_@_i
Intermediate IR-Specific Interface IR-Specific

R epres entation Implementation Analysis Results 2

Control-flow Graph Example

——Uses —»
---(Generates - OpenADFortTk
- Implements —
I
_CFG Interface |
CFG Analysis Zﬁ
A S » CFGStandard
Manager
..............) A
 CFG IR Interface
A
Whirl IR Sage IR Binary Object Code
Interface Interface IR Interface

Interacting Analyses and
Analysis Frameworks

—Uses —»

----(Generates --»
- Implements —

UDDUChains Standard
A

UDDUIChains ------------------------- ,
Analysis M anager@ ReachDefs Interface <} ReachDefi Standard

CFG Data-flow ReachDefs
Analysis Framewor nalysis Manager

Whirl IR Interface

Opaque Handles to Source IR

® ProcHandle, StmtHandle, MemRefHandle,
ExprHandle, etc.

® Provided by the source IR

® Analysis managers in OA provide analysis results
associated with handles

General Approach for Developing
an Analysis-Specific IR Intertace

® Represent relevant program constructs with an
opaque handle

® Make queries on handles for more information
e Example: Control-flow graph analysis

CEFG: : IRStmtType
getCFGStmtType (StmtHandle)

SIMPLE, COMPOUND, LOOP,
STRUCT TWOWAYCONDITIONAL,

Alias and Pointer Analysis

® Determines which memory references may or must
reference the same program state (or memory
locations)

® [mportant for many other analysis algorithms

Aliasing due to Arrays

REAL, dimension(10) :: A
3(0)_ i 1 - 10 ® A(0) does not alias A(i) but
OAJ(-i)— = won’t detect until doing
end do array section analysis
. = A(4) ® A(i) does alias A(4)

® A(0O) does not alias A(4)

Aliasing due to Reterence

Parameters
procedure foo(x,y) ® x and y are aliased in
integer,
intent (inout) :: x,y call to foo that

happens 1n bar

end function
® A reference parameter

can also alias a global

program bar
integer a ® For now we plan to

merge aliasing of all
calls to same
procedure

call foo(a, a)

Aliasing due to Pointers

REAL, POINTER :: P ® At G=P statement P may
REAL, TARGET :: T1,T2 lias T1 or T?
REAL -: C alias T'1 or
o . .

if (flag) Current aha.s algorltI.nn

P => T1 assumes pointers point to
else Unknown location

P => T2
end ® Required interface to
G =P implement pointer

analysis does exist

Approach to Determining Aliasing
in OpenAnalysis

® query source IR for memory reference expressions
that describe a memory reference

® map memory reference expressions to locations

MemRefExpr Location
LocBasicSubSet
tial
NamedRef par>-a 0
SymHandle for A, mLocC
_partial accuracy *
Location
A [.7] SymHandle for A
IdxAccess LocldxSubSet
mIdx = 7 mIdx = 7
Q ' Q
mMMRE mLoc
NamedRef Location
_iymHandle for A SymHandle for A H

Example Alias Analysis Results

® Analyze the set of may and must locations for each
memory reference

REAL, POINTER :: P
REAL, TARGET :: T1l, T2
if (flag)

P =>T1
else Location

SymHandle for T1

P => T2

or

end
G =@ # Location

SymHandle for T2

Data-flow Analysis

® (Operates on Locations

® Reaching Constants: if possible associates a
constant value with locations

® Side-effect Analysis: keeps track of locations that
may or must be modifiedor used

Status of IR Interfaces

® Whirl IR Interface (Open64IRInterface)

= Have interfaces for CFG, CallGraph, Alias, Reaching
Definitions, UDDUChains, Side-effect, and Activity
= Sti1ll Needed

® Persistent IR Handle values
® Appropriate memory reference expressions for pointers

® Sage IR Interface (SagelRIntertace)

= Beata 1s working on generating memory reference

expressions, which are a basic requirement for most
analyses

Status of Analyses

® Analyses that have been converted to NewOA
- CFG
= CallGraph

® Analyses in implementation and testing stages
= Alias analysis
= UDDUCNhains
= Interprocedural side-effect analysis
= Activity analysis

Alias Analysis

® Aliasing due to aggregate types and arrays

e el s
= A(3) Adi) I (<0..1, partial>)
X 2 {<2..2, full>}
A(3) 3 (<1..1, full>}

® Status: implemented but seems to be broken for array
references at the moment
® To handle constant array refs need more
and code to convert those to locations 6

Alias Analysis cont...

® Aliasing due to reference parameters

= currently assume make optimistic assumption that
aliases due to reference parameters don’t happen

= requires interprocedural alias analysis
= working on the interprocedural piece right now

® Aliasing due to pointers
= any dereference 1n a memory reference expression
results in a mapping to the Unknown location
= requires an alias algorithm that maintains a
points-to datastructure

Use-def and Def-use Chains
UDDUChains aka. DU _UD

® For each use memory reference lists the statements
that might define 1t. For each def memory reference
lists the statements that might use it.

® Used to create computational graphs within basic
blocks

® Jean, Nathan, and I have been actively debugging
this for the past few weeks

Interprocedural Side-ettect Analysis

® Determines the set of locations used (USE),
definitely defined (DEF), possibly modified (MOD),
and possibly reterenced (REF) for the procedure

® Not affected by optimistic assumption about
reference parameters not aliasing

® When translate to XAIF need to convert location
abstraction to variable references,

Activity Analysis

® [nterface for usage: provide an iterator for
independent and dependent locations

® Analysis indicates active locations, active
statements (those that may define an active
location), and active memory references

® Needs more testing

20

Better Testing Strategy

® |R Interface implementations

® Analyses
= again careful hand analysis and then regression
testing with examples from each source IR
= have analysis-specific IR interface parsers for
some but generating examples 1s time consuming

21

